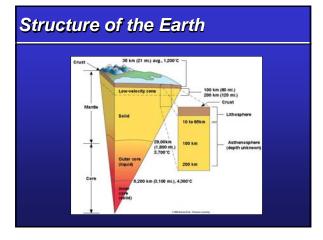
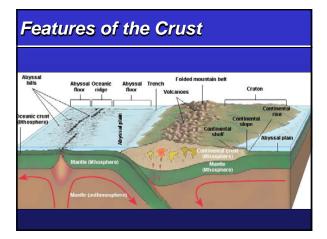
Chapter 15

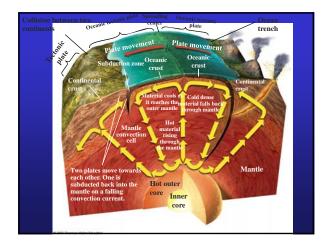
Geology

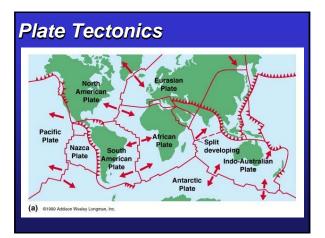

Processes, Hazards, and Soils

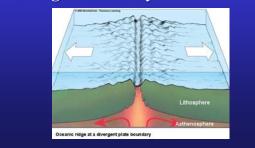
Key Concepts

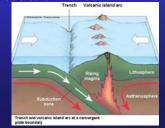

- > Internal geologic processes
- > External geologic processes
- > Minerals, rocks, and the rock cycle
- > Earthquakes and volcanoes
- > Soil structure and formation
- ➤ Soil conservation

Internal Geologic Processes


- Structure of the Earth
- Features of the Crust
- Plate Tectonics






Plate Tectonics

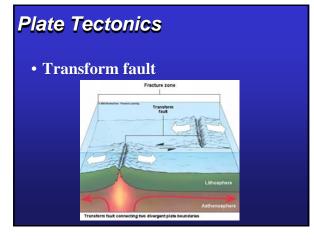

• Divergent boundary


Plate Tectonics

• Convergent boundary -Sub<u>duction zone</u>

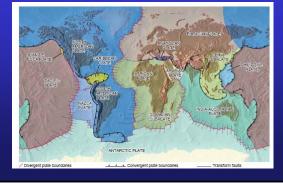
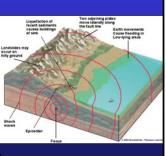


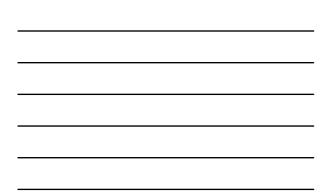
Plate Tectonics

The Earth's Major Tectonic Plates

GEOLOGIC PROCESSES

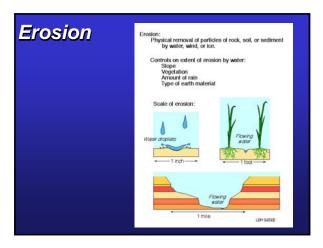


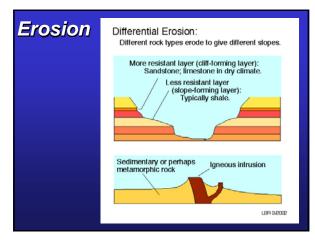
• The San Andreas Fault is an example of a transform fault.



Earthquakes

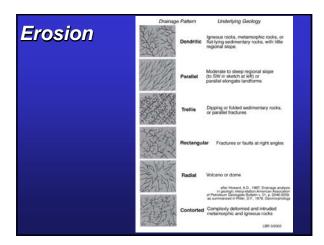
- > Features
- > Magnitude
- > Aftershocks
- > Primary effects
- > Secondary effects

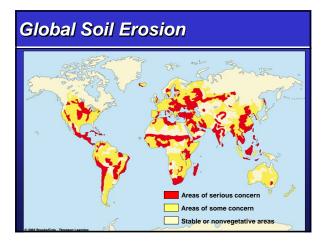




External Earth Processes

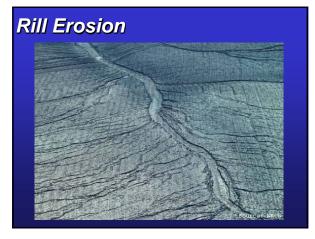
- **Erosion**
- > Mechanical weathering
- **>** Frost wedging
- > Chemical weathering





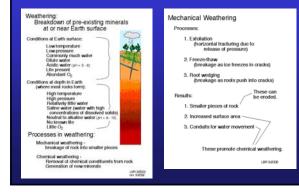
Soils: Erosion

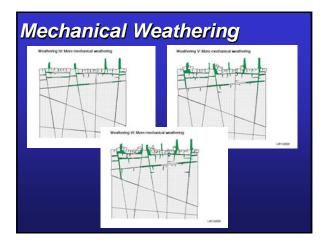
>Sheet erosion


- >Rill erosion
- ➤ Gully erosion

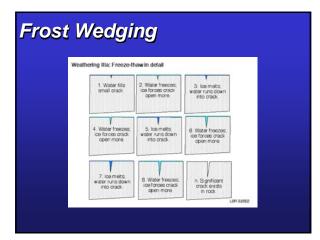

Sheet Erosion

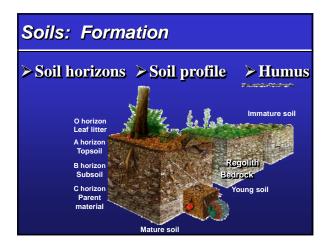
Sheet Erosion

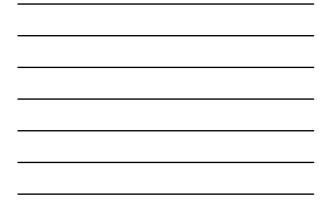


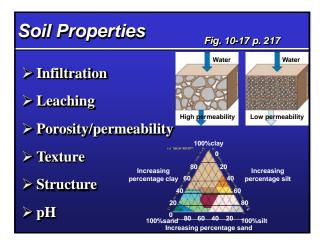

Gully Erosion

Mechanical Weathering

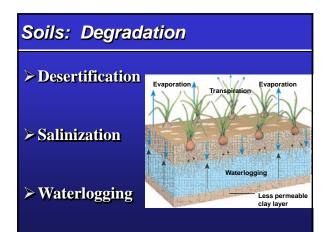





Chemical Weathering.


Water with dissolved ions produced by weathering

LIIR 3000



Soil Characteristics							
Texture	Nutrient Capacity	Infiltration	Water-Holding Capacity	Aeration	Tilth		
Clay	Good	Poor	Good	Poor	Poor		
Silt	Medium	Medium	Medium	Medium	Medium		
Sand	Poor	Good	Poor	Good	Good		
Loam	Medium	Medium	Medium	Medium	Medium		

Minerals and Rocks

> Mineral (diamond, bauxite)

Rock Types

- ➤ Igneous (granite, lava)
- > Sedimentary (limestone, sandstone)
- > Metamorphic (marble, slate)

Solutions: Soil Conservation

- > Conventional-tillage
- Conservation tillage
- > Cropping methods
- > Windbreaks
- ≻Land Classification

Conventional Tillage

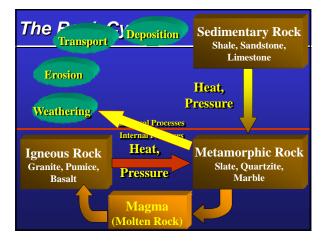
- Plowing the soil in a normal manner
 - The soil is churned up, allowing for the possibility of erosion
 - The planting surface is then smoothed over

Conservation Tillage

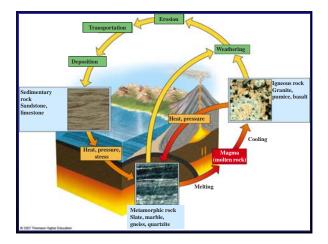
- Crops are planted with as little soil disturbance as possible.
- This prevents or lessens the amount of possible erosion.
- Also lower labor costs and energy savings.

Cropping Methods

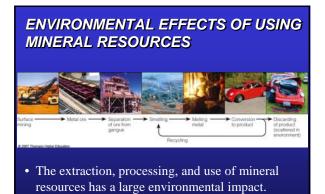
- Contour Farming
- Strip Cropping
- Terracing



Windbreaks



Soil Restoration


- >Organic fertilizer
- ≻Animal manure
- ≻ Green manure
- > Compost
- ≻Crop rotation
- > Commercial inorganic fertilizer

ENVIRONMENTAL EFFECTS OF USING MINERAL RESOURCES

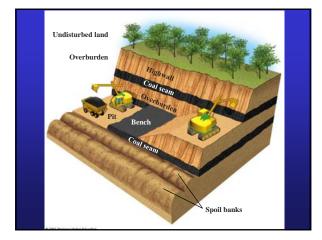
- Minerals are removed through a variety of methods that vary widely in their costs, safety factors, and levels of environmental harm.
- A variety of methods are used based on mineral depth.
 - *Surface mining*: shallow deposits are removed.
 - Subsurface mining: deep deposits are removed.

Open-pit Mining

Machines dig holes and remove ores, sand, gravel, and stone.

• Toxic groundwater can accumulate at the bottom.

Area Strip Mining



- Earth movers strips away overburden, and giant shovels removes mineral deposit.
- Often leaves highly erodible hills of rubble called *spoil banks*.

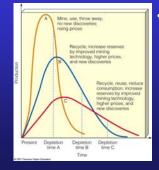
Contour Strip Mining

- Used on hilly or mountainous terrain.
- Unless the land is restored, a wall of dirt is left in front of a highly erodible bank called a *highwall*.

Mountaintop Removal

- Machinery removes the tops of mountains to expose coal.
- The resulting waste rock and dirt are dumped into the streams and valleys below.

Mining Impacts



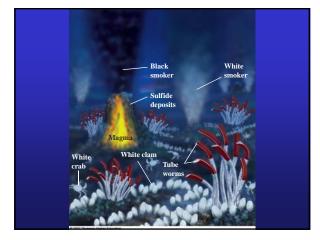
• Metal ores are smelted or treated with (potentially toxic) chemicals to extract the desired metal.

SUPPLIES OF MINERAL RESOURCES

- The future supply of a resource depends on its affordable supply and how rapidly that supply is used.
- A rising price for a scarce mineral resource can increase supplies and encourage more efficient use.

SUPPLIES OF MINERAL RESOURCES

- Depletion curves for a renewable resource using three sets of assumptions.
 - Dashed vertical lines represent times when 80% depletion occurs.


SUPPLIES OF MINERAL RESOURCES

- New technologies can increase the mining of lowgrade ores at affordable prices, but harmful environmental effects can limit this approach.
- Most minerals in seawater and on the deep ocean floor cost too much to extract, and there are squabbles over who owns them.

Getting More Minerals from the Ocean

 Hydrothermal deposits form when mineral-rich superheated water shoots out of vents in solidified magma on the ocean floor.

USING MINERAL RESOURCES MORE SUSTAINABLY

- Scientists and engineers are developing new types of materials as substitutes for many metals.
- Recycling valuable and scarce metals saves money and has a lower environmental impact then mining and extracting them from their ores.

Solutions Sustainable Use of Nonrenewable Minerals

- Do not waste mineral resources.
- Recycle and reuse 60-80% of mineral resources.
- Include the harmful environmental costs of mining and processing minerals in the prices of items (fullcost pricing).
- Reduce subsidies for mining mineral resources.
- Increase subsidies for recycling, reuse, and finding less environmentally harmful substitutes.
- Redesign manufacturing processes to use less mineral resources and to produce less pollution and waste.
- Have the mineral-based wastes of one manufacturing process become the raw materials for other processes.
- Sell services instead of things.
- Slow population growth.